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Abstract 
 

The use of bioinformatics’ tools for the study of non-coding RNA still remains a difficult task since RNA’s primary 
structure (the sequence itself) is not as informative as that of coding RNA and for this reason, research must rely on 
the study of secondary structure. One of the most promising tools in the field is the use of formal grammars. In this 
article a critical review of different methodologies based on the use of formal grammars for predicting the secondary 
structure of RNA sequences is presented. We conclude with a discussion of possible improvements on the described 
tools. 
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1. Introduction 
 
RNA molecules play an important role in biological 
entities. Their most recognized function is as 
messengers in the process of protein translation; 
however, there are many other forms of RNA some 
of which have an influence on the way genes are 
expressed [Mount]. These functions are not 
associated with the region that encodes for proteins 
but are stored in the larger non-coding regions of the 
genome, once classified as ‘junk DNA’ [Pesole]. 
Non-coding RNA (ncRNA) is produced by special 
genes whose transcripts are used directly as RNA 
instead of producing proteins [Eddy99]. Unlike 
coding RNA, the main source of information in 
ncRNA resides in the interactions between self-
complementary regions of the single stranded RNA 
molecule [Mount]. The interactions of the self 
complementary regions shapes the RNA molecules 
into different stable patterns (double stranded 
regions, stacked regions, hairpins, etc.) referred to 
as ‘RNA’s secondary structure’ (Figure 1), which in 
turn interact with each other to form the three 
dimensional (‘tertiary’) structure. Therefore, the 
study and prediction of the secondary structure of 
RNA, is crucial in understanding its function.  
__________________________ 

* ISEI, Colegio de Postgraduados, México 

1.1. Non-coding RNA  
 

It is widely recognized that ncRNA segments in 
the 5’ and 3’ untranslated regions (UTR) of genes 
are involved in the control of post-transcriptional 
pathways [Pesole], but many other ncRNA’s have 
been described and their number continues to 
grow. 

 
 

Figure 1. RNA’s Secondary Structure 
 

Source: [Mount] 
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Their relevance has moved from the more 
traditionally recognized tasks of regulating the 
stability of mRNA, controlling mRNA localization 
and its translation efficiency [Pesole], to a newly 
recognized diverse set of functions; including the 
processing transfer RNAs, translocation of proteins, 
and regulation during meiosis . Interest in ncRNA is 
not only driven by its diversity and variety of 
functions,  but there is also new interest in studying 
the evolution of ncRNAs:  the hypothesis that RNA 
based life preceded both to proteins and DNA in 
evolution (the ‘RNA World Hypothesis’ for the 
origin of life) [Eddy99], [Eddy02].  
 
A deeper study of ncRNA poses new challenges to 
bioinformaticians: current techniques available (for 
sequence alignment, database searches, gene 
finding, etc.) have been directed to the study of 
coding RNA and are not up to the challenge 
[Eddy02] of handling the less informative, more 
diverse ncRNA. 
 
Several techniques have been tried in attempts to 
predict the secondary structure of RNAs based on 
the sequence of nucleotides of its  molecule,  all of 
them with limited success. To date, the most 
successful approaches are those that take into 
consideration thermodynamic information (the ‘free 
energy’ of a given predicted structure) as the 
guiding parameter to be minimized in the process of 
optimization [Do]. However, these methodologies 
are expensive and time consuming, considering that 
they are based on experimentally measured 
information. It is then desirable to have handy 
cheaper and faster techniques that are as accurate as 
or more so than those based on free energy 
minimization. From the several computational 
alternatives that have been tried, those based on 
probabilistic methods have proved to be the best 
candidates, namely, the Stochastic Context Free 
Grammars (SCFGs) [Durbin] and more recently 
Conditional Log-Linear Models (CLLMs) [Do]. 
 
 
2. RNA: The Linguistic Approach 
 
There is  a prevailing metaphor that considers the 
genetic information in DNA to be ‘the language of 
life’. This analogy can be taken as far as comparing 
adjustments made during the evolution of genomes 
and languages [Zhang]. 
 
In the early eighties efforts began to represent 
nucleic acid sequences as “words over the alphabet 
of nucleotides” [Brendel]. The tools used were 

limited as was the success of the attempt, however 
an important step was taken: a key idea emerged 
that formal languages could be applied to the study 
of biological sequences. 
 

2.1. Formal Languages  
 
In order to have an understanding of the capabilities 
of formal languages as a tool for representing 
biological sequences , it is necessary to have a 
minimal understanding of the formal language 
theory itself. There are plenty of excellent texts that 
cover the subject in depth e.g. [Hopcroft]. For a 
quick and to the point introduction to the subject see 
[Durbin]. Here we will say that a formal language is 
a set of strings of symbols or ‘words’ (e.g. RNA and 
protein strings) over an alphabet (e.g. the set of 
nucleotides or the set of aminoacids) that can be 
generated by rewriting rules, a ‘grammar’. 
Grammars can be ordered in a hierarchy, ‘The 
Chomsky Hierarchy’ after its creator Noam 
Chomsky, from simpler to more complex, based on 
their capability to represent features of words of a 
(formal) language. For each grammar of this form, 
there exists a corresponding ‘processing machine’, 
called ‘automaton’ (plural: ‘automata’). Grammars 
and automata are two different but closely related 
things: grammars generate the strings of a language; 
an automaton for a given grammar is a (abstract) 
‘machine’ that parses (a parse is a derivation of 
some sequence through continuous application of 
rewriting rules) a string and either accepts or rejects 
a word as belonging or not to the language with 
which the automaton is associated. 
 
The simplest grammars are called ‘Regular 
Grammars’ (RGs) and they can be quickly parsed by 
the machines associated to them, known as ‘Finite 
State Automata’ (FSA). The structure of the 
rewriting rules is typically S → cS (where the 
symbol S  is called a ‘non-terminal’ and c is called a 
‘terminal’ symbol) and represents the possibility of 
starting a word of the language by replacing the 
starting symbol S by the string cS, in which we 
again can replace the S by  cS. We can keep going 
indefinitely, creating a sequence (for this case) 
cccc…. In order for the process to stop a special rule 
S → e is required. It represents the possibility of 
replacing the non terminal S by the terminal e (the 
‘empty string’). As we can see from the example, 
the grammar generates words of a very simple  
language in which the words are strings of symbols 
c of any length (0 to infinite). The possibilities of 
RG are limited given their simplicity, however they 
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were used in the earliest attempts to characterize 
RNA sequences [Brendel]. In that case, the authors 
found a regular language (and a corresponding FSA 
representation) of RNA sequences of group I RNA 
phages.  Their study was limited in that they 
considered only the primary structure of RNA, 
leaving aside secondary features. Another example 
on how regular grammars can be used for biological 
sequences is found in [Durbin] where the authors 
observe how PROSITE patterns clearly correspond 
to regular grammars. Even in this case where the 
regularity of the patterns can be directly represented 
by these simple grammars, increasing amounts of 
sequences generate mult iple exceptions that make it 
difficult to find good patterns. This requires the 
patterns to be narrowed to such an extent that they 
become too general and may match a large number 
of sequences, reducing their usefulness. 
 
The most important limitation of regular grammars 
come from their inability to represent slightly more 
complex features of a language that would be 
fundamental for enabling a formal grammar to 
represent the secondary structure of RNA 
molecules. As stated before, RNAs secondary 
structure is  due to interactions between self 
complementary nucleotides present at distant 
positions of the same string (see Figure 1).  An 
example of a self complementary sequence of 
nucleotides is  gauauc which can be folded into a 
structure similar to C in Figure 1, since the first 
three nucleotides (gau in 5’ to 3’ order) are  
complementary to the last three nucleotides (cua, in 
order 3’ to 5’). From the point of view of formal 
language theory this  type of string can be generated 
by the so called “Context Free Grammars” (CFGs).  
 
For CFGs the rewriting rules are typically of the 
form S → aSu. The associated processing machines 
are called ‘Pushdown Automata’ (PDA) and they 
are not as computationally efficient as their FSA 
counterpart . The name reminds us that this kind of 
automata require an auxiliary device (a ‘pushdown’ 
stack) that helps in ‘remembering’ symbols (for 
example the complementary portion of an RNA 
string). An example of a CFG which could generate 
the string gauauc above is S→ gSc; S→ aSu; 
S → uSa; S→ e, applied in that order. Realistic 
secondary structures like stem loops, bulges and 
arbitrarily branched structures can be easily 
generated by CFGs. 
 
In spite of the great possibilities of CFGs for 
representing secondary structure features of RNAs, 
there are some details that are worth pointing out. 

First of all, the fact that we want to use CFGs binds 
us to the computational properties of the abstract 
machines associated with them. The PDA are 
computationally time consuming machines. Another 
point worth noting is the inability of CFGs to 
represent other ‘non-orthodox’ secondary structures 
[Searls] such as  pseudoknots (Figure 2). 
 

 
Figure 2. Pseudoknots (A); Kissing hairpins (B) 

 
Source: Mount, 2004 

 

In the literature we can find other formalisms (e.g. 
tree adjoining and other “mildly context -free” 
grammars [Searls]), able to deal with a larger 
spectrum of RNA secondary structures.  
 
One is tempted to ask about other grammars which 
are higher in the hierarchy and therefore are more 
powerful and more capable of representing features 
for which CFGs are limited. Again, there are  
theoretical limits that bind more powerful grammars 
to slower processing machines and, at times, to 
machines incapable of giving an answer (for details 
see [Hopcroft]). 
 
Up to this point we have stated that CFGs (and other 
grammars) are capable of representing RNA’s 
secondary structure, and we as well benefit from the 
theoretical existence of their corresponding proces -
sing machines. Although from a biological point of 
view it sounds promising to have machines that 
recognize different strings of nucleotides as 
belonging or not to a certain class, the reality is that 
the capabilities of such machines are limited to, for 
example , looking up certain patterns in databases 
but they will not help to predict the secondary 
structure of an RNA molecule. 
 
 
3. Secondary Structure Prediction 
 
In order to be able to predict the secondary structure 
of RNA, CFGs elicit additional help from 
probability theory, giving rise to the use of 
Stochastic Context Free Grammars (SCFGs) that 
have been used in the area of speech recognition 
[Sakakibara]. In general, all of the grammars in the 
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hierarchy of Chomsky can be used in a stochastic 
fashion. Non stochastic versions of the grammars 
either do or do not generate a terminal symbol. A 
stochastic version of the same grammar would apply 
a rule (generating some symbol(s)) with a 
probability p, generating the different words of the 
language with a certain probability [Durbin]. In this 
way given a sequence and a grammar, we can score 
(and then rank) the possible parses  and then infer 
which is the most optimal. 
 
Probability theory has long been used as an aid to 
bioinformatics: algorithms for sequence alignment 
and the fashionable Hidden Markov Models 
(HMMs) themselves can be seen as equivalent to 
variations of stochastic grammars [Durbin]. It is not 
surprising that the algorithms used for training and 
scoring stochastic grammars resemble those used for 
HMMs.   
 

3.1. Stochastic Context Free Grammars 
 
Stochastic Context Free Grammars can be thought 
of as a “joint probability distribution over RNA 
sequences and their secondary structures” [Do]. A 
SCFG G defines: a) A set R of rewriting rules; b) A 
probability distribution over the rewriting rules; c) 
A mapping from the different derivations to 
secondary structures. The following example from 
Do describes a SCFG that works for some RNA 
secondary structures: 
 

a) Rewriting rules: S → aSu; S→ uSa; S → cSg; 
S → gSc; S→ gSu; S→ uSg; S→ aS; 
S → cS; S → gS; S→ uS; S → e; 

b) Probabilities: The rules have an associated set 
P of probabilities in such way that each of the 
above ri rules (i=1,..,11) would have an 
associated probability pri of being applied. 

c) Mapping derivations to structures: a secondary 
structure for a given derivation pairs two 
letters iif the two letters were generated at the 
same step during the derivation. 

 
Given this grammar, the sequence x=agucu (which 
has an associated secondary structure s), the parse p 
that generates it is : 
  

S → aSu→ agScu → aguScu→ agucu, 
 

and so the probability of the sequence AND parse1 
is:  
 

P( x,p ) = pr1x pr4x pr10x pr11. 
 

It is not difficult to combine information from an 
evolutionary model with that from a biophysical 
model in order to express them in the form of 
probabilities that affect the application of a given 
rule in a grammar G, hence obtaining a more 
powerful model [Dowell]. 
 
Once we have written a grammar that can model the 
strings of some specific type of RNA molecules, we 
are faced with three problems [Durbin]: 
 

a) Finding the optimal derivation  of a sequence x 
given G 

b) Finding the probability of a sequence x given 
G 

c) Estimating an optimal set P of probabilities 
associated with each rule, given a set of pairs 
{xi,si} of sequences xi and their respective 
secondary structure si (preferably validated by 
experimental means). 

 
For SCFGs there also exist Dynamic Programming 
(DP) algorithms that will find optimal solutions. 
Each of these problems are solved in a manner 
analogous to the way they are solved in the case of 
HMMs). The DP algorithms  for SCFGs and the 
problems they solve are presented in Table 1 (for 
details about the algorithms see [Durbin]). 
 

Table 1. DP Algorithms for SCFGs  
 

Problem Algorithm 
a) Optimal derivation given G CYK2 
b) Probability of x given set G Inside 
c) Estimation of set P Inside-Outside 

 
Source: [Durbin] 

                                                                 
1 There could be several ways of deriving the same string using 
the same grammar and applying the rewriting rules in a different 
order (this is called ‘ambiguity’ of a set R of rewriting rules), 
however for this particular grammar there is only one way of 
obtaining the example string (R is unambiguous). 
2 The CYK algorithm will not efficiently calculate an optimal 
derivation if the set R is ambiguous. However there is not an easy 
way of deciding whether or not a given grammar is ambiguous 
[Dowell]. 



SCFGs as Predictors of RNA’s Secondary Structure                                                                                                     5 
 

 3.1.1. How many parameters? 

Given that SCFGs can incorporate information from 
diverse sources in the form of parameters of the 
model, one might be tempted to think that by adding 
more parameters the model gets better. In general 
this is never the case and it also holds untrue for 
SCFGs. 

 
Thus a relevant question that deserves attention is : 
What is the best tradeoff between complexity and 
accuracy of predictions? To answer this question 
[Dowell] evaluated a set of small grammars by 
testing the accuracy of their predictions using a set 
of known RNA secondary structures and comparing 
the results against the energy minimization methods. 
Their conclusion was that the accuracies reached by 
compact grammars are not distant from the energy 
minimization methods, but the methods based on 
physics are still better.  
 
From the grammars they evaluated, the best 
performer was the grammar that is used by Pfold 
[Knudsen03]. This grammar is surprisingly simple: 
S → L; S → LS; F → dFd; F → LS; L → s; 
L→ dFd; “s symbolizes a base in a single string 
and ds symbolizes bases that pair up in a stem. The 
nonterminal S produces loops and F produces stems, 
while L decides whether a specific loop position 
should be a single base or the start of a new stem” 
[Knudsen99]. Figure 3 shows examples of the use of 
this grammar. Pfold uses a SCFG for producing a 
prior probability distribution of RNA structures, but 
its  novelty is the additional use of phylogenetic 
information: Pfold starts by taking an alignment of 
RNA sequences believed to share a common 
secondary structure as input. Those sequences will 
serve to obtain a consensus sequence CS and a tree 
T relating the sequences 3. Using CS and T, the 
grammar is used to estimate the plausible secondary 
structure common to the sequences in the alignment. 
 

3.2. Other probabilistic approaches 
 
As noted by [Dowell], none of the SCFGs in their 
study performed as good as the free energy based 
methods. That is one reason why many groups are 
still pursuing alternatives to the physics based 
models which rely on “thousands of experimentally-
based thermodynamic parameters” [Do].  In this 
section we will describe a promising alternative, not 
strictly based on SCFGs but deeply related to them: 
Conditional Log-Linear Models (CLLMs). 
                                                                 
3 If T is not given it has to be estimated from the data. 

 

        
Figure 3. Example of use of the grammar used by 

Pfold 

Source: [Knudsen99] 

 

3.2.1 Conditional Log-Linear Models 
 
This is a novel approach to RNA’s secondary 
structure prediction  due to Do et al. Conditional 
Log-Linear Models  (CLLMs) are a generalization of 
SCFGs (i.e. for each SCFG there is  an equivalent 
CLLM) that, according to the evaluation done by its 
authors, have accuracies that are better than those of 
the current probabilistic and physics based models. 
CLLMs are beneficial in that they hold the 
possibility of representing complex scoring systems 
(like the ones used by physics models). An 
additional bonus is the possibility of having a way 
of controlling the sensitivity and specificity of the 
algorithm. 
 
A key observation that hints at the possibility of 
using CLLMs is that SCFGs can be rewritten as log-
linear models  (LLM) in which the parameters 
(called ‘weights’) are constrained to take values 
from a restricted set. Another constraint is that other 
parameters of the LLM (called the ‘features of the 
model’) are restricted by the complexity of the 
grammar. For a LLM those restrictions are 
unnecessary and removing them opens new 
possibilities for the model. An immediate change 
due to this removal of restrictions is that the 
estimation of parameters is done in a different way, 
but it still closely follows the traditional inside and 
outside algorithms used for SCFGs. 
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The scene is completed by the possibility of 
straightly transferring the complex scoring terms of 
physics based models to CLLMs.  
 
CONTRAfold, the CLLM imp lementation in [Do], 
takes into account 13 different features (amongst 
others: base pairs, hairpin lengths, helix lengths, 
bulge and internal loop lengths and free bases).  The 
authors studied the set of grammars used by 
[Dowell] and generated their corresponding CLLM. 
In all but two cases CLLMs performed better than 
the corresponding SCFGs , and in the two cases in 
which SCFGs did better the differences were  
actually small. When CLLMs were compared 
against other commonly used probabilistic and free 
energy methods, the difference again favored 
CLLMs, even when compared with the current best 
method, Mfold [Zuker]. 
 
 
4. Possible Improvements 
 
Along this research several approaches and opinions 
have been reviewed. It is not difficult to notice that 
none of the proposals can be considered final. The 
current best methods (energy based) are criticized 
for being expensive and time consuming, since large 
numbers of parameters have to be derived by 
experimental means. In addition, several different 
foldings lay around the minimum energy point 
causing difficulty in deciding which one is better 
[Mount]. 
 
As for the linguistics based methods material of this 
work, there are several possibilities that could be 
worth exploring. The proposals are not presented in 
any order of relevance.  
 
In statistics some of the research has been oriented 
towards new methods for estimating parameters, 
whereas in the papers referenced, the method 
traditionally used is Expectation Maximization. This 
could be an avenue of research: the study of the 
behavior of the different methodologies under 
different approaches to parameter estimation.  
 
In the study of performance of grammars by 
[Dowell], the best performer was Pfold. This tool 
uses a simple grammar AND aid from phylogenetic 
considerations. It is  worth taking into account this 
type of ‘aid’ for the algorithms used in secondary 
structure prediction. For example , in the case of 
CLLMs: Could there be an improvement in the 
predictions by using this kind of additional 
information? 

Finally, given that one of the difficulties in studying 
the secondary structure of ncRNAs is due to its 
diversity [Eddy99], another idea could be to have an 
assessment similar to the one by Dowell. In this case 
the performance of various grammars would be 
evaluated for different groups of ncRNA in order to 
obtain both good and bad performers depending on 
the type of RNA under study. 
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